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The purpose of this research is to investigate the potential application of new methods for 
solving large-scale static structural  problems on concurrent computers. I t  is well known 
that traditional single-processor computational speed will be limited by inherent physical 
limits. The  only pa th  to achieve higher computational speeds lies through concurrent 
processing. Traditional factorization solution methods for sparse matrices are  ill suited for 
concurrent processing because the null entries get filled, leading to high communication and 
memory requirements. The research reported herein investigates alternatives to factoriza- 
tion that promise a greater potential to achieve high concurrent computing efficiency. Two 
methods, and their variants, based on direct energy minimization a re  studied: a) minimiza- 
tion of the strain energy using the displacement method formulation; b) constrained minimi- 
zation of the complementary strain energy using the force method formulation. Initial 
results indicated that  in the context of the direct  energy minimization the displacement 
formulation experienced convergence and accuracy difficulties while the force formulation 
showed promising potential. 

I. In t roduct ion  
HIS report summarizes the results of a research to investigate the potential of alternate methods for solving 

T l a r g e - s c a l e  structural probleins on future computers. The finite elenieni method has proven to be a widely used 
technique to perform structural analysis. The method allows continuum problems of solid mechanics to be approxi- 
mated by a finite number of unknowns. Using variational principles of mechanics, static problems reduce to the 
solution of a system of linear equations (or a sequence of linear equations for non-linear problems). The need for 
detailed analyses of complex structural systems (aerospace, automotive, and civil engineering) will soon lead to 
structural models with I O  to 100 million degrees of  freedom. 

Solution of such large problems in a reasonable time will require computing at the processing rate far exceeding 
the capacity of today's single processor CPU (Central Processing Unit)-based computers. CPU speeds will eventu- 
ally reach inherent physical limits as processor miniaturization descends to the molecular and atomic scales. Recent 
computer technology advances (large-scale multi-processors, clusters or grids of commodity CPU's, and reconfigur- 
able Computers such as Field Programmable Gate Arrays) are being developed to improve aggregate computing 
speeds. Although widely different in their details, these technologies share the coininon theme of concurrent 
processing. 

However, engineers cannot use the new computing technology until they have applications software developed 
that exploits the technology to its full potential. Traditional methods (algorithms) cannot realize the full potential of 
concurrent processing because they are rooted in the sequential thinking of the human brain. The method conimonly 
used in the Finite Element Analysis (FEA) solves the load-deflection equations, [K] ( U )  = (P},  for displacements U 
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by use of one of  the standard algorithms, e.g., pivoting or triangular factorization, applied to the sparse matrix of 
coefficients (the stiffness matrix). 

This method lacks efficiency in concurrent processing because in the factoring operation a significant percentage 
(20% is typical according to’) of the null entries in the sparse K become non-zero (a filling-in phenomenon) in a 
pattern difficult to predict in advance. When the factoring operation is partitioned among many processors, the 
filling-in complicates memory allocation to the individual processors. Furthermore, the factoring partitions remain 
coupled, resulting in the time-consuming, inter-processor communication. 

The alternative of the domain decomposition (e.g., analysis by substructuring) creates, on one hand, the opportu- 
nity to engage many processors, but, on the other hand, it requires additional coinputing effort to account for 
substructure couplings. That additional effort detracts from the parallelism gain increasingly as the number of 
substructures increases. Paradoxically, in the limit when each substructure shrinks to just one finite element all the 
gain is erased. Hence, the experience indicates that the law of diminishing returns limits the number of concurrently 
operating processors to low hundreds*. In contrast to the matrix factoring, the iterative based on reduc- 
tion of the load-deflection equations residual are free of the filling-in. In the concurrent processing, they have a 
potential, in principle, to engage as many processors as there are individual terms in the equations. However, they 
require a problem-dependent number of iterations. 

This study focuses on the class of iterative methods that, instead of reducing the load-deflection equations resid- 
ual, minimize directly the structure elastic strain energy. The methods investigated herein fell into the following 
categories: a) Unconstrained minimization of energy as a function of the displacement variables; b) Minimization of 
energy as a function of the elemental forces under equilibrium constraints; c) Minimization of energy as a function 
of the elemental forces, unconstrained by prior elimination of the equilibrium equations. 

The candidate methods evaluated using example applications on a single processor computer with the immediate 
purpose to determine which of the candidate algorithms perform well enough in terms of accuracy and convergence 
characteristics to justify future testing on a multiprocessor computer. The testing eliminated the first two algorithm 
categories. Their discussion and results are provided in the Appendix for the sake of  completeness. Preliminary 
results for the third category were encouraging enough to qualify it for further research and for the detailed descrip- 
tion in the body of the report. 

11. Direct Energy Minimization Formulations 
To avoid the drawbacks of the traditional formulation, the guiding idea behind this research was: 

“Avoid jornzing and factoring large matrices. ” 
Without pivoting or factoring, there is no fill-in to increase storage and complicated inter-processor communica- 

tions. Thus, storage requirements will increase linearly with the number of nodes. 
This idea leads back to  the fundamental variational principles of mechanics. These principles allow a structural 

problem to be cast as an energy minimization problem. The principle of minimum of energy is well established in 
literature5.h and direct minimization has been proposed before, but it has not been practical because there was no 
optimization method effective for the very large number of state variables encountered in structural analysis. That 
obstacle has been recently removed and optimization with hundreds of thousands of variables is now possible7. This 
enabled the formulations adopted herein. The Direct Energy Minimization (DEM) replaces solution of the load- 
deflection equations, [K] {U} = P by one of the alternatives presented below. 

The Direct Energy Minimization in a Displacement Method (DEMIDM) formulation is written as 

GIVEN: structure geometry, material properties, and loading forces P” ( la )  
FIND: {U) (1b) 
MINIMIZE: 1/2 C, (u: KL u t )  - P A T  U (IC) 

where the elemental displacements (u‘) relate to the nodal displacements {U} by the connectivity matrix A which 
contains only one unity entry in each row 

The counterpart of Eq. ( I )  stated in the form of the Direct Energy Minimization in the Force Method formula- 
tion. DEMiFM may be cast as: 
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GIVEN: structure geometry, material properties, and loading forces P (2) 
FIND: f, the vector of all elemental forces (2a) 
MINIMIZE: 112 Ck (f; Ftf;) 

SATISFY: AT f = P (2c) 

( 2 4  f," Hi< ~ h = 0 for all elements 

where A, again, is the connectivity matrix; f{ - forces on k-th element in the Displacement Method format; 

k-th element. 
The DEM/FM is being considered for the following reason. The elemental stresses are of primary interest in 

many applications and they derive directly from the elemental forces f '. In the DM formulation these forces are 
secondary variables obtained by differencing the displacement field. Inherently, then, the displacements must be 
calculated to accuracy higher than the accuracy acceptable for stress. A simple rod under axial load, shown with all 
the data in Fig. I ,  illustrates this point. The rod is divided into N finite elements, numbered starting with 1 at the 
fixed end. The displacement at the loaded end is uN = PL/EA = 4.8541 33294500270. For N = 1000, the displace- 
ment at the junction of the elements N and N-l is = 4.849279161205770. The difference between uN and uN-, 
begins at the third significant digit. Repetition of the calculation for N = 10,000, 100,000, and 1000,000 shows that 
the first difference location migrates to the 4-th, 5-th, and 6-th significant digit. In the DEM context, the above 
observation translates into expectation of the FM formulation converging to the accuracy satisfactory for stress in 
the number of iterations smaller than in the DM formulation. This may offer a significant advantage considering 
that stress seldom needs to be defined to more than three to four significant digits for meaningful comparison with 
the material allowables typically available with three significant digits precision. 

p - thzt iiicludc rczc:ions (sclf-cq.c;ilibratcd ioads); aiid lik f; = 6 rz - - - - - -~ -  p1C;SFIIL;S C y U l l l U l l U l l l  :I:L-: ...-- F~UdLIUI I> --..-A:--- r-.. IU1 

Elements 1 + N  

Figure 1: A simple rod under axial load modeled with N; Length L =IO000 cm; P = 10000 Newton; 
E = 2060 1000 N/cm sq. 

As with DEM/DM, DEMiFM also affords an opportunity for concurrent computing in the element-by-element 
evaluation of the elastic strain energy, Eq. (2b). 

In this study, both DEM/DM and DEMIFM formulations were examined by numerical testing. As it is well- 
known, the equality constraints are usually an obstacle to fast convergence especially in large problems. Therefore, 
the prcsence of the equality constraints in DEMiFM was addressed in three variants of the solution of Eq. (2): 

a) 
b) 
c) 

Application of SUMT (Sequential Unconstrained Minimization Technique); 
Partial elimination of the equality constraints; and 
Complete elimination of the equality constraints. 

Thc results for DEMiDM and the variants a and b of DEM/FM were found to bc inadequate to continue. For the 
sake of the report completeness, these formulations and their results are included in the Appendix. 

The DEM/FM variant c formulation generated results encouraging enough to warrant further attention and 
development. Its detailed description follows. 

111. DEM/FM with Complete Elimination of Equality Constraints 
Description of the DEMiFM variant c begins with Eqs. (2c) and (2d). It entails the equilibrium considerations, 

transformation of AT, and reduction to unconstrained niininiization problem. 
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A. Equilibrium analysis 
The load vector ( P )  in Eq. (2c) is a superposition of the applied load (PA} and a set of statically determinate re- 

actions R, (redundant reactions will be introduced later) induced by p". The reactions, R,, are obtained from the 
body equilibrium equation 

NFT 
NNE 
NB 

where matrix E, is, typically, 3x3 for 2D structure cases, and 6x6 in 3D cases. When R, becomes known, P is 
computed from 

Elemental (internal) forces (total) 
Nodal equilibrium equations 
Bodv eauilibrium eauations 

P = P" + R, 

Another way to represent P is 

P = p  {P") 

(4) 

where p - a parameter, and P" - normalized vector. 
Table 1 defines dimensions for the matrices and vectors in Eqs. (2)-(5). The difference between NU and NNE 

stems from the assumption that P is a self-equilibrated load vector that includes reactions. Construction of such a 
vector implies solution of the body equilibrium equations that are equivalent to a subset of the equilibrium equations 
for the joints (nodes) by the theorem of equivalence between the equilibrium of the parts and the equilibrium of  their 
assembly. 

Table 1. Dimensional data definitions 

I Number o f :  
EDOF I Elastic degrees of freedom (total) 

I NFU I Elemental forces reduced by the use of elemental equilibrium equations I 
NU 
NEE 

I Usable nodal equilibrium equations = NNE - NB 
I Single element eauilibrium eauations = EDOF 

I NFE I single element forces I 
I NFI I Single element independent forces = NFE - NEE I 
I NFD I Single element dependent forces = NEE 

In a statically detel-nzirzed structure, NFU = NNE - NB so the forces f may be obtained by solution of Eqs. (2c) 
and (2d) without the aid of the energy minimization in Eq. (2b). In a statically undetel-mined structure where 
NFU > NU, a constrained minimization, i.e., entire Eq. ( 2 ) ,  is required. In principle, one may eliminate the equality 
constraints by merging Eqs. (2c) and (2d) into a single set of equations. Pivoting on that sets leads either to a com- 
plete solution for f if the structure is statically determinate (then no further processing by DEM is necessary), or to 
partitioning of f into f d-dependent forces, and f '-independent forces, if the structure is redundant. However, this 
approach requires forming and factoring large, sparse matrices, which should be avoided according to the guiding 
principle of this study. 

The following operations replace the above matrix factorization. Having the elemental forces in Eq. (2d) parti- 
tioned into f ', and f I ,  subsets for each element 

Eq. (2d) is solved for f to obtain 

f f  = E, f l  (7) 
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As the above relationship holds for each element, E is saved as a part of  the element definition (matrices E for 
elements of the same type are all the same, except of the embedded geometrical dimensions that may differ from one 
element to the next). 

B. Transformation of AT 
Turning attention to Eq. (2c), AT contains unity entries representing f and f '. Its standard form in a graphic 

permutation of the remaining columns, one may convert Eq. (2c) to a form illustrated in Fig. 3 where LT is a lower 
triangular submatrix associated with the dependent forces f ', C is a rectangular submatrix associated with the 

rendition is depicted in Fig. 2. Now, use of Eq. (?), eliminates from .4T those co!umns that correspond to f 'd . By 

independent fcrces f *, 2nd !3 is 1 suhm&ix pe!?2ir?i!?g !c the rigid bedy eC;ui!ib!ium. 

NFT 

AT 
P includes 

of reactions, it is 
self-equilibrated load 

Figure 2: Assembled structure equilibrium equation. 

N E D  = NFU-NU 

N U ~ l  NNE 

NB 

NFU = NNE f l  P 

NFU 

Figure 3 :  Assembled structure cquilibriuin equation transformed. 

Before describing the above transformation details, it should be clarified that the presence of  [LT] in Fig. 3 
brings about one key advantage. Using [LT], it is ~ Z O M '  possible to solve Eq. (2c) bj! a single joiwai-d substitution 
(FS) without use of aiiv niatrix factoring arid ~~itlioutjilliizg-iii that M,ould reduce the mati-i.x sparsih. 

As an analogy one may refer to Cholesky's algorithm to solve a generic set of simultaneous, linear equations 
[MI ( x )  = (b)  by factoring [MI into the lower-triangular and upper-triangular matrices, LT and UT. Under that 
algorithm (x)  is then obtained by executing one Forward Substitution (FS) on LT and one Backward Substitution 
(BS) on UT. Similarly, the transformation from the format in Fig. 2 to Fig. 3 generates LT but without the matrix 
factoring and without creating UT, so that BS is unnecessary. 

It was found that the LT pattern in AT is not obtainable in the exceptional case when a finite element exists in 
which NFI < NFD, (Table l) ,  as it occurs in truss rods and shear panels. The simple remedy is, for example, to treat 
the rod as a beam, and to achieve a pure truss action, if necessary, by prescribing very small moments of inertia. 
1. Details of the A T  Traiisfbrmation 

Consider a generic A'  and examine a submatrix representing contributions of the k-th element. Fig. 4 shows A' 
with the k-th element submatrix highlighted (heavy line box) for an arbitrary case for which there are NFE = 8 
element forces numbered on the top. These forces contribute to the EDOF equilibrium equations corresponding to 
the matrix rows (highlighted green) as indicated by unity entries. By definition there is only a single entry of 1 per 
column, all other entries are zeros. The pattern of the non-zero locations results from the numbering of the Finite 
Element Model nodes and the EDOF within an element and may not exhibit any particular regularity. In the ensuing 
transformations, the row numbering does not change but the columns are permuted, first within each element sub- 
matrix and, next, over the entire matrix. 

The number of dependent forces at the eleinent level is denoted NEE. Let NEE = 3 in the k-th element, hence 
NFI = 8 - 3 = 5 .  The dependent forces are placed at the end (red) of the numbered list. Figure 5 illustrates how by 
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Element k 
f i n  original numbering 

Independent 
1 2 3 4 5  

1 

1 

1 
1 

1 

Dependent - 6 7 8  

1 

1 

1 

Figure 4: AT matrix with submatrix corresponding to k-th element (heavy line box). 

f - numbering 
Afterpermutation 1 6 5 7 3 
Original order 1 2 3 4 5  

1 
1 

1 
1 

1 

2 4 8  
6 7 8  

1 

1 
1 

Figure 5:  Submatrix for k-th element permutated to for a NW-SE sequence of 1 's. 

permuting the columns within the element submatrix, the unity entries may be relocated to form a sequence of  5 
starting at the NW corner and extending toward SE in a regular pattern such that each next entry is below the previ- 
ous one. The remaining 3 entries (highlighted red in the figure) do not follow in the above pattern. 

in a new order. It will become apparent soon that the location of the f entries below the f entries is important. 
The two lists of numbers on top show how the forces migrated from the original to new positions. This completes 
the force renumbering at the element level. 

The sequence of NFI = 5 identifies the element f i, and the remaining NFD = 3 entries constitute the element f 
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Next, recall that f depends on f per Eq. (7). Therefore, it is possible to delete the column corresponding to 
f and to replace each f d  unity entry with the influence coefficient representing fd(fji) placed in the same row and 

the column fji. The solutions of Eq. (7) for f obtained for the unity entries on the right hand side, taken one at a 

time, supplies the influence coefficients to be referred to as the f coefficients. 
Figure 6 depicts the k-th element submatrix after the column deletion. It shows the NW-SE sequence of  the 

unity entries and the blocks highlighted by a dot-pattern that hold the f coefficicnts. 
The above rearrangement repeated for all elements (it may be all done simultaneously) completes the first step of 

the transformation. It results in AT whose number of columns is smaller, and its nonzero entries are distributed as 
depicted in Fig. 7. The sequences of 1 ‘s are in the grey blocks: the f coefficients are contained in the dot-pattern 
blocks located below the sequences of 1’s within each submatrix. While the column permutations in the foregoing 

d 

d 

After pennutation 
f - iiuiribering 

1 6 5 7 3  

1 
1 

1 
1 

1 
m.: ........... -...-...-.-.-._I .:.:.:.:.:::i:;:i:i::::::::::::::::::: i:i:i:i:i:::::::::::]:i:i:I:i:I:i:i:I: 

Figure 6: Dependent force columns deleted in the submatrix. Pattern-filled blocks hold dependent force 
coefficients. 

8 
E 
0 
c) 

Figure 7: Global view of entire AT (only three element submatrices in this example) after column permutation 
and deletion within each submatrix. Pattern-filled blocks hold the dependent force coefficicnts. 
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Figure 8: Matrix AT after column permutation to construct the NW-SE line (bold) of 1's and submatrices LT, C, 
and B. Dot pattern-filled blocks hold dependent force coefficients. 

occurred within each element submatrix, now, in the second step of the transformation, the columns are permuted 
matrix-wide, disregarding the element submatrix boundaries, to construct a continuous sequence of unity entries 
extending from the NW comer SE-ward. As each column contains a single unity entry and a group of the f 
coefficients heloM1 it, all these coefficients end up beloM3 the diagonal sequence of unity entries. Figure 8 illustrates 
the new pattern of  the nonzero entries. 

The formation of the diagonal sequence of unity entries stops when no more unity entries can be found available 
to be permuted. The diagonal sequence of 1's (the bold line in Fig. 8) together with the f " coefficients beneath it 
(dot-pattern blocks) form the [LT] submatrix. The rows remaining below [LT] constitute the submatrix [B], and the 
submatrix remaining in the NE area is [C] (which vanishes in a statically determinate structure). The new order of 
columns dcfincs a new numbering of f e whose correspondence to the original onc is savcd to allow thc original 
form of F e in the energy minimization in Eq. (2b). 

In actual programming, the entire matrix transformation operation is implemented by manipulating the indices of 
sparse arrays. 

This transformation identifies automatically f and f at the assembled structure level (while Eq. (7)  does that 
at the element level). At the assembled structure level, f relates now to f I and P* by 

[LT] f d = - [ C ]  f ' + { P * } ;  (8) 

where * signifies that P is curtailed by clipping the bottom NB entries. The dimensions in Eq. (8) are: [LT], 
NUxNU; {f '}, NUxl, [C], NUx(NFU-NU); {f '}, (NFU-NU)x1; and {P*}, NUxl .  For a statically determined 
structure, C vanishes and f may be obtained from the remainder of Eq. (8). 

In summary, the elimination of the dependent forces in the above transformation is a two-steps process. First, 
the dependent forces are eliminated at the element level using Eq. (7). Next, permuting the columns and reducing 
AT in Fig. 2 to LT, C, and B in Fig. 3 finds more dependent forces. In general, in each of these two steps, the 
numbering of the elemental forces changes and the changes must be recorded to enable return to the original num- 
bering for the final result output. 
2. Deperiderit Forces as Furictions of the Irideperident Oiies 

Because the ultimate goal is the unconstrained energy minimization, Eq. (2b) must be stated in terms of f ' as 
independent variables. It is useful, therefore, to obtain an explicit relationship of f to f I and P 

f d = [ D , I  f'+fpd (9) 

where fpd is f due to P. 
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d To obtain [ D f ]  and f p  one solves Eq. (8) by superposition, separately for unit values of f ' ,  and separately for 
P*, remembering that DEM must be repeated for all the loading cases. The step-by-step algorithm is: 

Algorithm: step-by-step: (10) 

a) 
b) 

c) 

Set P*= 0, and solve [LT] f = - [C] f for one of the elements in { f ' } set to I ,  all other elements set to 0; 
Record the solution { f d}  as a column in I D I: 
Repeat from step #a for another element in {f I}, until [ D f  1 is filled; 

Set f = 0, and solve [LT] f = P*; and record the solution as fpd. 
Repeat step e) for NLC loading cases. 

d) s2ve [ nf j fer the "se in the energy minimiz2tion; 

e) 
f! 

The above algorithm provides an opportunity for using concurrent processing in step #c whose repetitions may 
be executed all at once. Furthermore, the entire algorithm needs to be carried out only once before the minimization 
begins. 
3. Rrdundunt Reuctiorzs 

Until this point the presence of any redundant support reactions was ignored. However, if they exist they must 
be treated in the energy minimization, Eq. (2b), as  additional independent variables alongside f I. Formalization of 
this may be accomplished by defining (R}, NRxl ,  as the vector of all supports reactions. Then, R is partitioned into 

where R, is the set of reactions minimally needed to eliminate the body freedom (for example, 3 reactions for a 2D 
case, and 6 reactions for a 3D case), and R,, NRRxI, contains the excess redundant reactions. 

Analogous to Eq. (7), the body equilibrium equation for a particular redundant reaction R,, 

yields R, induced by R t .  A superposition of R L  and R, it induces forms a vector { R,} for the abovc particular 
R,k. This vector may also be represented in a form similar to Eq. ( 5 ) :  

where p, is a parameter, and the R: vector is normalized. 
Treating R, as loads acting on the structure in addition to P, Eq. (9) generalizes to 

I I,Tl{fd} = -lC]{fi} + pr { R: *}  + { P*}; (14) 

By setting f ' = 0, and P* = 0, and repeating the solution of Eq. (14) with pr = 1 for all redundant reactions R, 
one at a time, one generates columns of matrix D, needed to augment Eq. (9) with a tern1 I D, I p, representing R, 

where { p,} contains parameters of all the redundant rcactions (Eq. (13)). 
On a historical note, in the Force Method practiced before the digital computers became common the statically 

indeterminate unknowns such as f and R, were exposed by fictitiously "cutting" the structure. Thc placement of 
cuts was judgmental. In the Finite Element version of the Force Method, the cutting was automated, and thc judg- 
ment was removed, by pivoting on the equilibrium matrix to identify the redundant ~ n k n o w n s * ~ ~ ~ ' ~ .  In that context, 
the foregoing introduces yet another way for identification of the redundant unknowns. The common feature of all 
these techniques is non-uniqueness of the identification of the redundant unknowns. 
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4.  Generating Eleineiital Flexibility Matrices 
Generation of the elemental flexibility matrices from the stiffness matrices available in a standard finite element 

code may be accomplished in two ways. One way is to perform a partial factorization with full pivoting of the 
element stiffness matrix. The factorization stops when all remaining diagonals are zero (or numerically negligible). 
This process outputs the elemental flexibility matrix defined relative to the remaining pivots which are designated as 
supportedI0. No judgmental preselection of the supported degrees of freedom is needed. The other way is compu- 
tationally simpler but requires a preselection of a set of supports sufficient to remove the element rigid body 
degrees of freedom. Then, the element stiffness matrix is modified by zeroing out the rows and columns corre- 
sponding to the supported EDOF and placing unity entries at the diagonal where these rows and columns intersect. 
This modification* removes the element stiffness matrix singularity so the matrix may now be inverted. The forma- 
tion of the element flexibility matrix is completed by substituting zeros at the diagonal locations in the inverted 
matrix where the unity entries were previously placed in the stiffness matrix. 
5. Uncoristi-aiized Miriinrizatioii 

strained form: 
With the relationship of Eq. (15) available, the energy minimization, Eq. (2), takes on the following uncon- 

FIND: f ' and p,., i.e., the independent elemental forces and redundant reaction parameters; (16) 

(1 6a) MINIMIZE: 112 Z k  (ff Ff f t )  

USE: fe={fd l f i} ,where  f d = f d ( f i ,  p,) perEq.(15). ( 1  6b) 

Solution of Eq. (16) yields f and pr whose substitution into Eq. (15) generates f ". The reactions are recovered 
by computing R ,  from Eq. (13), and obtaining R, by superposition of two terms: R ,  due to P" from Eq. (3), and 
R generated by all individual R per Eqs. (13) and (1  2 ) .  
6. Coniputiiig the Displacenieiits 

Unlike the Displacement Method, the Force Method does not yield the entire displacement field. The displace- 
mcnts of  interest must be selected and, then, calculated by means of the dummy unit load (DUL) in a virtual work 
method. This method produces a particular displacement LJi as: 

where f h u L  stands for thc forces generated on k-th finite element by DUL associated with the particular U i .  
In Eq. (17), f i  is available from solution of Eq. (16). Given a DUL, the forces f i U l -  may be obtained from 

solution of equilibrium of  the structure converted to a statically determinate one; satisfaction of the compatibility 
equations is not necessary. This means that one may construct the equilibrium equation patterned after Eq. (14) 

where the right hand side has a format similar to the one in Eq. ( S ) ,  i.e., the unit load is represented in the same 
manner as load P by S" standing for a normalized vector that contains d = 1 for the DUL itself and R that DUL 
induces, and by setting d = 1 by the definition of DUL. The * at S" has the same meaning as the * at P in Eq. (8). 

If MU displacements are desired for NLC loading cases, the sequence of Eqs. (1 7) and (1 8) must be repeated 
MUxNLC times. Again, multiprocessing computing may be used to compress the elapsed time for this sequence as 
well as for the element-by-element operation in Eq. (17). 

IV. Multi-span Beam Test Case 
A 6-span beam loaded by concentrated moments as shown in Fig. 9 provides an example of application and a 

test for Eq. (16). Table 2 displays the bending moment values at the supports obtained by DEM/FM and the refer- 
ence values obtained from the standard 3-moments equations (that derive from the Castigliano Theorem). The 
problem's geometrical symmetry and its loads anti-symmetry were deliberately not taken advantage of in the 
DEM/FM solution to gain an additional assessment of the accuracy by comparing forces that ought to be equal due 
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Table 2. Results for 6-span beam test case 

2 0.13330997 2115 0.13333333 0.0001 8 
3 I -0.13331 -2115 I -0.1333333 0.00017 
4 0.46666867 711 5 

* Normalized by max(Moment) = 811 5 

0.46666667 1 4.3E-06 

to the symmetry. The Table 2 results show that the relative error with respect to the reference solution was less than 
0.02% and the relative error in symmetry was less than 0.007%0. The process converged in 5 iterations using the 
optimizer available in the EXCEL spreadsheet. 

This test case was too small to extrapolate its results to large-scale applications. Also, it did not provide empiri- 
cal data on concurrent computing advantages because it was implemented on a conventional, single processor 
computer. However, by converging to accurate results, the test indicated that DEM/FM has a potential to warrant its 
further investigation. 

5 
6 
7 
8 
9 

10 
11 

V. Conclusions 
The study examined a finite element solution method which uses direct energy minimization as an alternative to 

the conventional load-deflection equation formulation. Thc motive is to exploit power of concurrent computing in 
the large-scale structural analysis. The experience and theory reported in literature point to the scalability limits of 
the conventional methods based on the sparse matrix factorization. In contrast, the direct energy minimization 
(DEM) method potential to fit the concurrent processing technology stems from its inherent parallelism predicated 
on its use of element-by-element processing which avoids forming and processing large sets of simultaneous 

-0.53333133 -8115 -0.53333333 3.8E-6 
1.9984E-05 0 0 0.00015* 

-1.998E-05 0 0 0.000 1 5 * 
0.53333523 811 5 0.53333333 3.6E-06 

-0.46666477 -7115 -0.46666667 4.1 E-06 
0.1333566 2/75 0.1 333333 0.00017 1 

-0.13335665 -2115 -0.13333333 0.00017 

equations. 
0 Five alternative formulations for the DEM method were investigated by numerical testing. Thc follow- 

ing four exhibited performance judged to be inadequate; 
Displacement formulation; 
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Force formulation with equilibrium equality constraints; 
Force formulation with partial elimination of the equality constraints; 
Force formulation with the equality constraints incorporated through a penalty function. 

The poor performance of the above formulations was traced to i l l  conditioning, lack of a universally effective 
and application-independent technique for preconditioning in the conjugate gradient optimization, and inability to 
satisfy the equilibrium equality constraints with acceptable accuracy. 

In contrast, the fifth alternative, the DEM in a Force Method formulation, with the equality constraints com- 
pletely eliminated tumed out to be promising. The removal of the equality constraints was achieved by solving the 
equilibrium constraints using the matrix column permutation to reduce the matrix to a lower-triangular form without 
factoring. This approach overcame the difficulties experienced with the first four formulations and has generated 
results that were good enough to warrant further investigation for very large-scale applications on a multiprocessor 
computer. The latter will provide the actual measure of improvement because the metrics of elapsed time, memory 
requirements, and cost strongly depend on the details of the particular hardware architecture used. 

VI. Appendix-DEM/DM and DEM/FM: Formulations and Testing Results 
This Appendix contains the formulation details and results for the methods categorized in the Introduction as: 

a) Unconstrained minimization of energy as a function of the displacement variables; b) Minimization of energy as a 
function of the elemental forces under equilibrium constraints. 

A. DEMlDM Formulation 
The problem is set as an unconstrained minimization defined in Eq. ( 1  ). The optimization was conducted by 

means of the conjugate gradient method aided by preconditioningI0. An example of a solution successfully obtained 
by DEM is a solid cube whose FEM is depicted in Fig. A l .  This 3-D brick model simultaneously illustrates the best 
performance of the conjugate gradient method and the worst performance of direct factorization. The model con- 
sists of 8000 elements. Using commercial finite element and optimization codes described in' this model was 
solved with the conjugate gradient method in only 37 sec on a single processor computer. This compares very 
favorably to the 161 see required by a direct factorization on the same single processor computer. However, for 
more realistic models, particularly those with shell elements, the conjugate gradient method was found to not per- 
form well. A remedy could, potentially, be provided by a suitable preconditioner. Unfortunately, as discussed in 
Ref. I O ,  there is no universally effective technique for constructing a preconditioner so that a case-by-case experi- 
mentation is involved. Table 3 shows comparison of the performance of the conjugate gradient method without any 
preconditioning for the cube model (#1) in Fig. A l ,  as well as several other shell and solid models originating from 
the recent industrial practice. Their size in terms of EEDOF ranges from the order of thousands for Model #2 to 
hundreds of thousands for Model #6. 

The elapsed time for DEM in a Conjugate Gradient search is not fully indicative of the method performance 
potential because a single processor computing was used for all results in the table. The comparison on strain 
energy shows agreement ranging from exact, #1-3, to very poor as in #6. The residual taken as a synthetic measure 
of satisfaction of the load-deflection equations is 3 to 6 orders of magnitude worse than in the conventional method. 

Figure A1 : Solid cube modeled with brick 3-D elements. 
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Table 3 .  Sample single-processor conjugate gradient timings 

Problem Number 
Conjugate gradient Factorization 

I I I I I I 

Time Time Strain Energy Residual Strain Energy name I 1 Iterations I Residual I 
1 .  cube 
2. cclip 

I 

27771 143 3.3673798-1 0 1.65 1754k+OO 37.00 6.9161YXE-14 1.651754E-00 161.00 
368 1 351 -1.737790E-12 9.307911E+OI 4.00 -2.057317E-14 9.307914E-01 3.00 

3. tete I 20082 I 1465 I -2.484554E-11 I 3.104309E-06 I 92.00 I -7.405986E-14 
4. knuckle 1 14544 1 2680 -1.420550E-07 1 I.S81993E+03 118.00 1 -4.189363E-12 1.882032Et03 1 20.00 
5. kenki 59643 I 11929 I -2.620755E-07 I 5.695816Et05 I 1776.00 I 3.291284E-13 I 5.917549E+05 1259.00 
6. hardtop I 248970 I 49795 I 3.1686688-07 I 4.047854E+01 137724.0 I 3.934094E-11 I 7.284592E+01 I 472.00 

I 

~ ~~ 

3.304309E-06 21.00 

I I I I 1 -  

Considering the previous discussion of the accuracy of the elemental forces relative to the displacements in DM, the 
comparison on the residuals in Table 3 does not qualify the DEM in the DM formulation (DEMIDM) without a 
preconditioning as a tool for use with confidence. It would be premature to conclude that an upgrade of the 
DEMiDM algorithm to the accuracy adequate for practical purposes for both displacements and forces is not possi- 
ble. However, such upgrade would require development of a new preconditioner universally effective across the 
range of  commonly encountered types of structures. Such development being beyond the scope of this study, the 
DEMiDM formulation was set aside, and attention in the remainder of the study turned to the DEM in a Force 
Formulation (DEMFM) discussed in detail in the body of the paper. 

B. DEM/FM Formulation 
A formal statement for DEM/FM is given in Eq. ( 2 ) .  By its nature, this is an equality-constrained minimization 

and different ways of accounting for the constraints engender different techniques for solution. Two solutions tried 
herein are: representing the constraints as an objective function penalty, and a partial elimination of the equality 
constraints in two versions. Version 1 calls for solving the elemental equilibrium Eq. (2d), and Version 2 partially 
eliminates the equality constraints by solving the assembled structure equilibrium Eq. (2c). 
1. Penalty Function Formulation 

This formulation uses the Sequential Unconstrained Minimization (SUMT) algorithm. A quadratic penalized 
objective function was constructed to which an efficient quadratic minimizer, e.g., a con.jugate gradient technique, 
could be directly applied. The penalized objective function, @, was written as 

@ = 1 / 2  f e  F e  f e + p ( A T  f e  - P)T[hI (AT f "-P) 

where p is the overall penalty parameter, and [h] is a diagonal matrix of penalty coefficients h, assigned to individ- 
ual constraints. 

Results of attempting to apply this method to a 10-rod truss (defined in Ref. 8, p. 197) showed great sensitivity to 
the penalty parameters. The extreme ill  conditioning of the resulting system caused the conjugate gradient method 
to have difficulty keeping new search directions conjugate to the previous directions. Conclusion reached from the 
above results was similar to that drawn for DEMiFM: to make this approach useful would require new development 
of a preconditioning technique for the conjugate gradient method. Consequently, the SUMT approach to DEMiFM 
was not pursued any further. 
2. Eliniiriation of Eleniental Equilibrium Equations 

Version 1 of this approach calls for using Eqs. (6) and (7) to eliminate f and rewriting Eqs. (2b) and (2c) in 
terms of  the remaining f I ;  Eq. (2d) drops out. Version 2 accomplishes the similar result by permuting the columns 
of AT matrix in Eq. (2c) to obtain 

[IIATP] { f C )  = ( P ) ;  

where f e is partitioned into f and f '. 

nodal equilibrium equation. Hence, each column of A' is all null except a single entry of unity. 
The permutation of AT to [IIATP] is possible because, by definition, a particular f e contributes to only one of the 
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Solving Eq. (A2) for f leaves Eq. (2) curtailed to Eqs. (2a), (2b), and, (2c). In general, each of these two 
versions may result in a different allocation of the elements of f e to f and f ' and different length of the f and f ' 
vectors. Neither approach eliminates the equality constraints completely, so both are a compromise between the 
ideal of a completely unconstrained optimization and the need to avoid factorization of large matrices. 

Both of the above versions have been implemented using commercial grade codes. The GENESIS" finite ele- 
ment code generated the element stiffness matrices, and the BIGDOTI2 solved the resulting constrained minimiza- 
tion problem. BIGDOT allows constrained minimization, but all of the constraints must be of the inequality type. 
To enforce the equality constraints into a form acceptable to BIGDOT, each equality was expressed as a pair of 
opposite-in-sign inequalities. 
3. Rod 1-D Test Case 

All the numerical experiments herein were performed on a single processor computer because the immediate 
purpose was to determine which of the candidate algorithms perform well enough in terms of accuracy and conver- 
gence characteristics to justify future testing on a multiprocessor computer. Initial experiments showed that the 
optimizer had a difficult time in enforcing all of the constraints. Additionally, since the optimizer enforced con- 
straints only to within a set tolerance, small errors could propagate and aggregate across the model. A one- 
dimensional rod model with 5000 elements, previously introduced in Fig. 1, illustrates the case. The structure being 
statically determinate, there was a unique set of the feasible forces, and the only task for the optimizer was to satisfy 
the constraints. 

x 104 2.5 3 I 

2.0 
u 
3 
m - > 1.5 

.5 

0 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Node number 

Figure A2: Nodal force imbalance constrain. 

Figure A2 shows the nodal imbalances for the final forces obtained by the optimizer. It can be seen that these 
imbalances are well below the constraint tolerance. Figure A3 shows the element force error as a function of the 
element number. At the point of application of the load, the element force is extremely accurate. However, the 
nodal imbalances accumulate to create errors that soon reach unacceptable levels. 

As one strategy to reduce the error accumulation from slight nodal imbalances, the reaction force was included 
along with the applied load. Because this system is statically determinate, the reaction force could be obtained from 
inspection. To apply this to more general models, additional constraints are imposed to require that the reaction 
forces be in equilibrium with the applied loads. Figures A4 and A5 show that even with an increased constraint 
tolerance, this simple change leads to a dramatic reduction in the error propagation, though it is still unacceptably 
high. 

For the second strategy to reduce the element force errors, a residual correction step was proposed. For any lin- 
ear system: 

. 
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Figure A3: Element force error distribution over the rod length. 
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Figure A4: Nodal force imbalance. 

for which there is a capability to approximate the solution by T: 

- - 
x = A-’b 

where is an approximation to A-’ . 

A residual-based iterative correction procedure can be constructed as: 
r = b - A s i  

- 
= x i  + A-lr 

This procedure converges if and only if the spectral radius of ( I  -L- lA)  is less than unity (thus an approxima- 
tion to K’ may only bc uscd if it is “closc cnough“). 
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Figure A5: Element axial force distribution. 

Because the optimizer is approximately satisfying a system of equality constraints, it can be viewed as an 
operator that approximates the inverse of the coefficient matrix. Thus, the above residual correction procedure can 
be applied. After the initial optimizer solution, the nodal force imbalances are gathered and treated as a new correc- 
tive loading. The element forces obtained from the corrective loading are added to the original element forces to 
obtain new corrected element forces. This process could continue iteratively until a desired accuracy is reached. 
Numerical experiments with the I-D rod example showed that one residual correction step was sufficient to bring all 
of the element forces to less than 0.01% error. 
4. Plate 2x3 Test Case 

Version 1 of  the DEMiFM solution including both the reaction forces and the residual correction step was 
applied to a simple cantilever plate model consisting of 6 QUAD4 shell elements (Fig. A6). Numerical experiments 
have shown that proper scaling of both the element force variables and the constraint values is crucial to obtaining 
accurate results. In particular, because the rotational forces (moments) tend to have a different order of magnitude 
that the translational forces, they must be scaled differently. Otherwise, the optimizer tends to favor one set of 
forces over the other, and does not converge to accurate results. Figure A7 shows that with proper scaling, accurate 
results can be obtained for this small model. In fact, the residual correction step was not necessary in this case. 

Figure A6: 2x3 plate. 
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Figure A7: 2x3 plate resultant forces. 

5. Box Beanz Test Case 
Following the good results from the simple cantilever plate model, a somewhat more complicated shell model 

was constructed. This model of a tapered box bean1 with a shear web contains more coupling of  bending and 
in-plane forces (see Fig. A8). The results show that even with the improvements of including the reaction forces, 
the residual correction step, and proper scaling, accurate results were not obtained (see Table 4). The optimizer was 
able to satisfy the constraint equations, but then failed to reduce the objective function. It is likely that proper 
scaling the objective function value with respect to the constraint values could remedy the difficulty. 

T , 

Figure A8: A thin-walled box beam. 
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Table 4. Sample of element force resultants for cantilevel box beam (Fig. A8) 

1 

2 

I Current BIGDOTiFM Results Reference Results I 

3535.791 -3159.08 -258.509 1 11.66792 63.89381 4.80409 
192.5922 693.1301 908.5403 0.014871 0.079455 -0.00218 

1 185.675 -855.517 -82.5887 2 -1.27423 58.70311 -3.71174 

-NX- -NY- ' , -NXY- -NX- -NY- -NXY- 
QUAD4ID1 -MX- 1 -MY- 1 -MXY- ~ , QUAD4IDi -MX- i -MY- i -MXY- 1 

3 
-93.3975 3210.543 977.2568 -0.01 18 0.018378 0.015368 

-1 19.044 69.79244 7.82654 3 -0.741 8 53.40004 -5.98264 

4 
79.02282 4335.385 555.2748 -0.005504 0.02482 0.01 1424 

-474.5 3 9 211.8338 ~ 31.015 4 -2.57632 48.90023 -6.49746 

5 
- 149.442 3814.969 203.3365 -0.007741 0.01677 0.006012 
-494.157 164.6404 3 1.3083 5 0.440966 43.8262 -8.08197 

6. Plate 10x1 0 Test Case 
To test version 2 for dependent force variable elimination, a 10x10 mesh of quad4 elements with simple supports 

on the four edges was constructed (Fig. A9). This model was subjected to uniform normal pressure. This method 
showed results of  similar quality to version 1. Figure A10 shows that while the trend of the MX and MY force 
resultants are captured, the magnitude is off by about 10%. The MXY force resultants show significant error. 

-138.465 

Figure A9: 10x10 plate. 

41 82.982 32.17092 -0.0037 1 0.015109 I -0.00224 1 

100 

50 

0 
-50 

-100 

-150 

-200 
-250 
-300 

Figure A10: 10x10 plate resultant forces. 
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